ideal$37298$ - Übersetzung nach italienisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

ideal$37298$ - Übersetzung nach italienisch

FAMILY CLOSED UNDER SUBSETS AND COUNTABLE UNIONS
Σ-ideal; S-ideal; Sigma ideal

ideal      
n. ideale
ideal gas         
THEORETICAL GAS COMPOSED OF MANY RANDOMLY MOVING POINT PARTICLES WHOSE ONLY INTERACTIONS ARE PERFECTLY ELASTIC COLLISIONS
Ideal gases; Monatomic ideal gas; Monatomic Ideal Gas; Ideal Gas; Boltzmann gas; Ideal-gas
gas ideale, gas perfetto
uniform flow         
  • A potential flow is constructed by adding simple elementary flows and observing the result.
VELOCITY FIELD AS THE GRADIENT OF A SCALAR FUNCTION
Potential flow in 2d; Potential flow in two dimensions; Ideal flow; Full potential equation; Doublet (potential flow); Uniform flow; Two-dimensional potential flow; Complex potential
flusso uniforme

Definition

ideal
<theory> In domain theory, a non-empty, downward closed subset which is also closed under binary least upper bounds. I.e. anything less than an element is also an element and the least upper bound of any two elements is also an element. (1997-09-26)

Wikipedia

Sigma-ideal

In mathematics, particularly measure theory, a 𝜎-ideal, or sigma ideal, of a sigma-algebra (𝜎, read "sigma," means countable in this context) is a subset with certain desirable closure properties. It is a special type of ideal. Its most frequent application is in probability theory.

Let ( X , Σ ) {\displaystyle (X,\Sigma )} be a measurable space (meaning Σ {\displaystyle \Sigma } is a 𝜎-algebra of subsets of X {\displaystyle X} ). A subset N {\displaystyle N} of Σ {\displaystyle \Sigma } is a 𝜎-ideal if the following properties are satisfied:

  1. N {\displaystyle \varnothing \in N} ;
  2. When A N {\displaystyle A\in N} and B Σ {\displaystyle B\in \Sigma } then B A {\displaystyle B\subseteq A} implies B N {\displaystyle B\in N} ;
  3. If { A n } n N N {\displaystyle \left\{A_{n}\right\}_{n\in \mathbb {N} }\subseteq N} then n N A n N . {\textstyle \bigcup _{n\in \mathbb {N} }A_{n}\in N.}

Briefly, a sigma-ideal must contain the empty set and contain subsets and countable unions of its elements. The concept of 𝜎-ideal is dual to that of a countably complete (𝜎-) filter.

If a measure μ {\displaystyle \mu } is given on ( X , Σ ) , {\displaystyle (X,\Sigma ),} the set of μ {\displaystyle \mu } -negligible sets ( S Σ {\displaystyle S\in \Sigma } such that μ ( S ) = 0 {\displaystyle \mu (S)=0} ) is a 𝜎-ideal.

The notion can be generalized to preorders ( P , , 0 ) {\displaystyle (P,\leq ,0)} with a bottom element 0 {\displaystyle 0} as follows: I {\displaystyle I} is a 𝜎-ideal of P {\displaystyle P} just when

(i') 0 I , {\displaystyle 0\in I,}

(ii') x y  and  y I {\displaystyle x\leq y{\text{ and }}y\in I} implies x I , {\displaystyle x\in I,} and

(iii') given a sequence x 1 , x 2 , I , {\displaystyle x_{1},x_{2},\ldots \in I,} there exists some y I {\displaystyle y\in I} such that x n y {\displaystyle x_{n}\leq y} for each y . {\displaystyle y.}

Thus I {\displaystyle I} contains the bottom element, is downward closed, and satisfies a countable analogue of the property of being upwards directed.

A 𝜎-ideal of a set X {\displaystyle X} is a 𝜎-ideal of the power set of X . {\displaystyle X.} That is, when no 𝜎-algebra is specified, then one simply takes the full power set of the underlying set. For example, the meager subsets of a topological space are those in the 𝜎-ideal generated by the collection of closed subsets with empty interior.